2-5 Postulates and Paragraph Proofs

Determine whether each statement is always, sometimes, or never true. Explain your reasoning.
7. The intersection of three planes is a line.

SOLUTION:
If three planes intersect, then their intersection may be a line or a point. Postulate 2.7 states that two planes intersect, then their intersection is a line. Therefore, the statement is sometimes true.

8. Line r contains only point P.

SOLUTION:
The postulate 2.3 states that a line contains at least two points. Therefore, line r must include at least one point besides point P, and the statement that the line contains only point P is never true.
9. Through two points, there is exactly one line.

SOLUTION:

Postulate 2.1 states that through any two points, there is exactly one line. Therefore, the statement is always true.

2-5 Postulates and Paragraph Proofs

Determine whether each statement is always, sometimes, or never true. Explain.
24. There is exactly one plane that contains noncollinear points A, B, and C.

SOLUTION:

Postulate 2.2 states that through any three noncollinear points, there is exactly one plane. Therefore, the statement is always true.
For example, plane K contains three noncollinear points.

25. There are at least three lines through points J and K.

SOLUTION:

Postulate 2.1 states through any two points, there is exactly one line. Therefore, the statement is never true.

26. If points M, N, and P lie in plane X, then they are collinear.

SOLUTION:

The points do not have to be collinear to lie in a plane. Therefore, the statement is sometimes true.

27. Points X and Y are in plane Z. Any point collinear with X and Y is in plane Z.

SOLUTION:

Postulate 2.5 states if two points lie in a plane, then the entire line containing those points lies in that plane.
Therefore, the statement is always true. In the figure below, points $V W X Y$ are all on line n which is in plane Z. Any other point on the line n will also be on plane Z.

2-5 Postulates and Paragraph Proofs

28. The intersection of two planes can be a point.

SOLUTION:

Postulate 2.7 states if two planes intersect, then their intersection is a line. Therefore, the statement is never true.

29. Points A, B, and C determine a plane.

SOLUTION:

The points must be non-collinear to determine a plane by postulate 2.2. Therefore, the statement is sometimes true.

Three non-collinear points determine a plane.

Three collinear points determine a line.

